

THE GROWTH PIPELINE COMPANY

Powering clients to a future shaped by growth

#SHIFTHAPPENS

June 2020

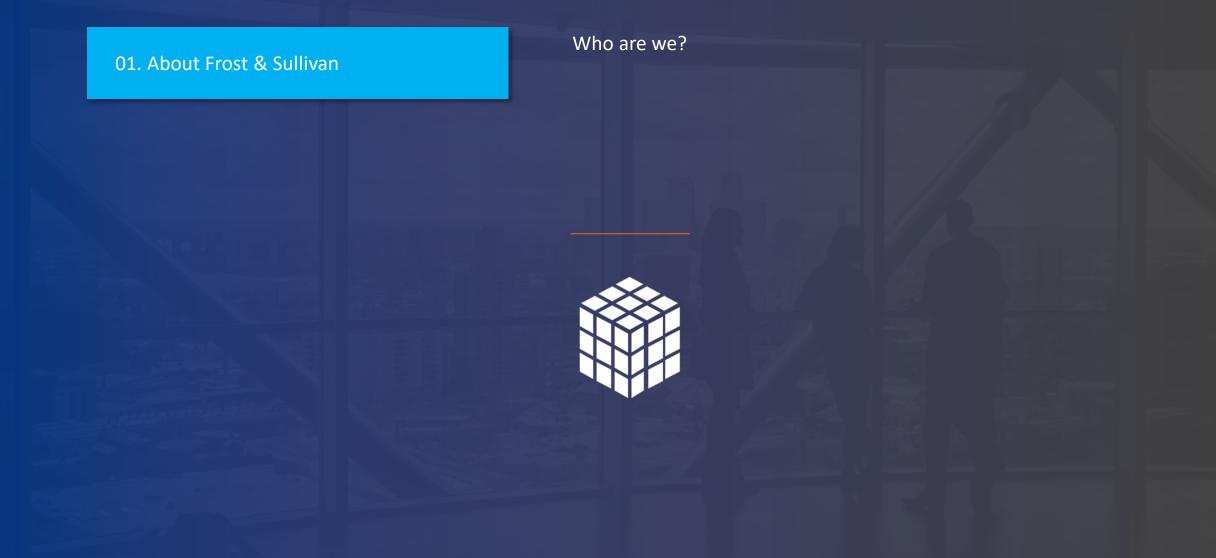
The Growth Pipeline Company[™]

AGENDA

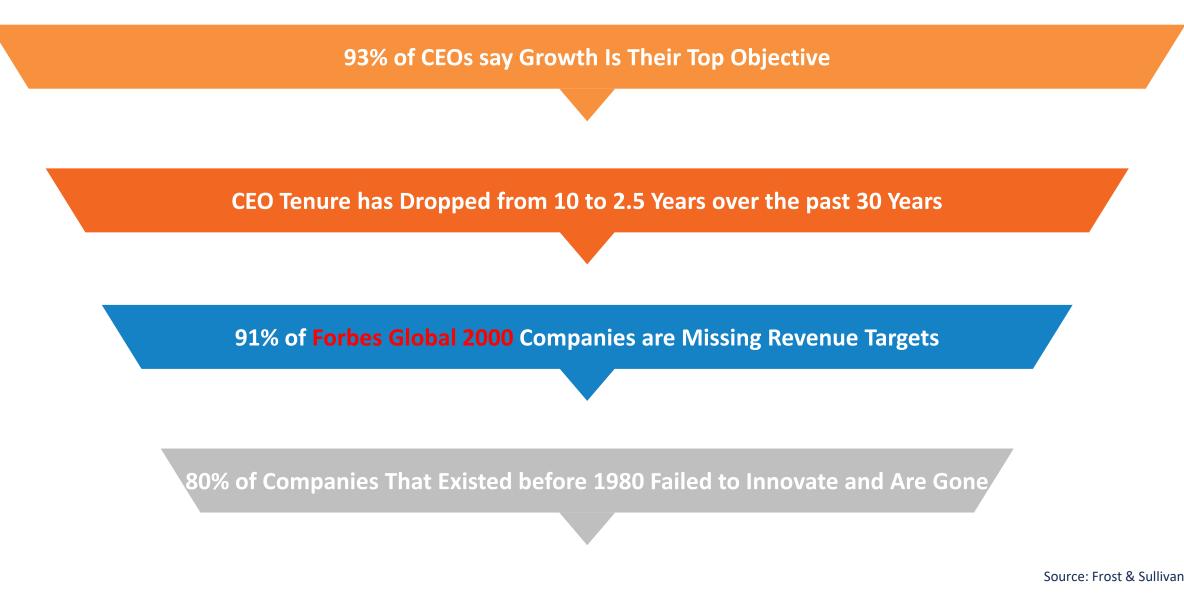
About Frost & Sullivan

COVID-19 Impact Analysis

Forecast: IA Market, Industry and Regions Competition Customer

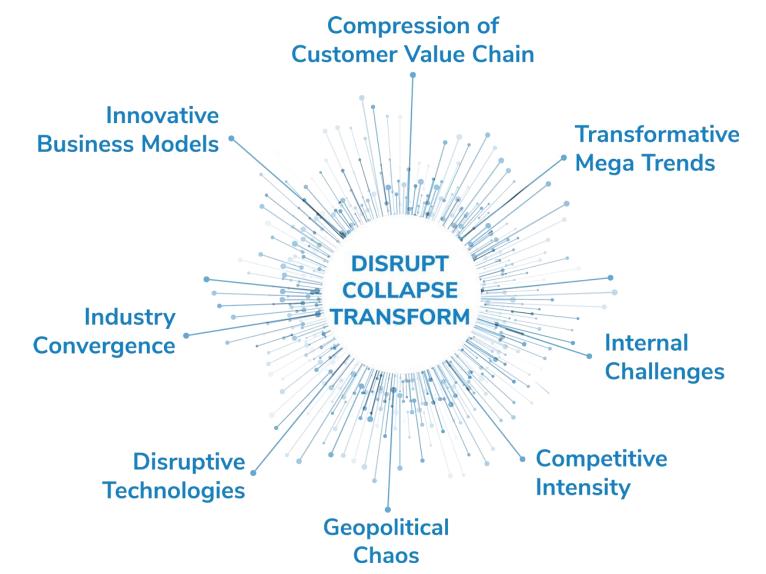

Industry and Technology Trends

Short and mid-term trends Long-term trends


Customer Trends

Critical issues Use cases

8 to 9 AM CT



STRATEGIC IMPERATIVE: GROWTH IS THE TOP OBJECTIVE, BUT IT IS BECOMING INCREASINGLY DIFFICULT TO ACHIEVE

WHY IS GROWTH BECOMING INCREASINGLY DIFFICULT TO ACHIEVE?

THE STRATEGIC IMPERATIVE EIGHT™: FACTORS CREATING PRESSURE ON GROWTH

Digital Industrial Transformation Track Record

Helping Diversified Industrial Conglomerates Identify Growth Opportunities and Calibrate Commercialization Models

Date	Company	Project Title	Outcome
2017	Leading HVAC supplier	Digital business models	Developed new business models to help in new market penetration.
2017	Industrial seals company	Pumps and seals digital transformation playbook	 Digital plays evaluation Customer analytics
2018	Leading Healthcare Solutions Company	Connected Bedroom: Digital Transformation Business models	 Developed value-propositions New business models to help in new markets entry
2018	Leading ICT company	Digital Transformation for Automotive, Machinery Manufacturing , Smart Spaces and Aviation	 Leveraged digital as the cross-innovation lever to drive growth across its business platforms Commercial approaches Build/buy/partner strategies
2018	Industrial seals company – Repeat project	Business models and pricing models assessment	- Follow-on project to develop commercial approaches for the digital plays
2018	Largest NA automation company	Valve Service Digital Transformation Playbook	 Leverage digital services to check feasibility of a new business unit Commercial approach development Customer analytics and propensity to buy Channel strategies
2018	Largest construction equipment company	Digital services transformation for Engine Customers	 Understand Segmentation, Customer Value, Adoption Best Practices and Recommend Key Elements of Go-to-Market Strategy and Business Model
2018	Independent O&G drilling equipment	Digital Transformation of Drilling/Future of Drilling	 Develop the technology roadmap of automation in drilling systems Uncover industry gaps, opportunities and strategic imperatives
2018	Independent oilfield equipment and technology company	Digital services for Energy Value-stream	 Identify digital plays and its associated business models and pricing models. Create an objective view of business case for digital to be the biggest revenue generator by 2021
2019	Third largest oilfield service and equipment company	4IR play identification – Enterprise level and for a business unit	 Identify 4IR implications across the organization's \$20B+ portfolio Transform a product companies outlook and develop a 3Y digital strategy

GROWTH PIPELINE ENGINETM A PROVEN, TRUSTED AND VALUED PROCESS – PERFECTED OVER 50 YEARS OF OUR EXISTENCE

5- Step Process

Opportunity Universe

Identification of the range of growth opportunities

Opportunity Evaluation

Deep analysis of prioritized opportunities

Go-to-Market Strategies

Translation of strategic alternatives into a cogent strategy

Planning & Implementation

Implementation of specific plans with milestones, targets, owners, & deadlines Monitoring & Optimization

Optimization of strategies & implementation actions

Source: Frost & Sullivan

FROST & SULLIVAN

02. COVID-19 Impact Analysis

At this juncture, recovery will be a long-drawn out process. We expect different recovery time frames across various businesses. At a high-level, we expect markets to enter positive territory by Q3, 2021. Further, the world may go into a lock and release cycle, every three months depending on infection rates.

Global Visioning Scenarios

COVID-19 RECOVERY PHASES, GLOBAL, Q1 2020 – Q3 2021

Q1, 2020 to Qx RESPOND

Lockdown affects production and supply

Unemployment to reduce demand and consumption

Investments on hold due to volatility and tight cash flows

Q2, 2020 to Q3, 2020 RESET

Lock and release cycles with some demand spurts

Fiscal stimulus, tax deferment and interest rate cuts

Loosening of austerity measures

Improvement in consumer and business sentiment

Q4, 2020 to Q3, 2021 REBOUND

Demand revival - Rise in private and public spending

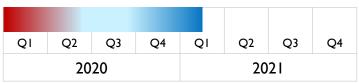
Increase in business confidence to spur CAPEX

Air travel ramps back to normalcy

Production, employment and economic activity to rise

2

VISIONING CASE SCENARIOS, GLOBAL 2020 – 2021


QUICK RECOVERY (Unlikely case)

QI	Q2	Q3	Q4	QI	Q2	Q3	Q4
	20	20			20	21	

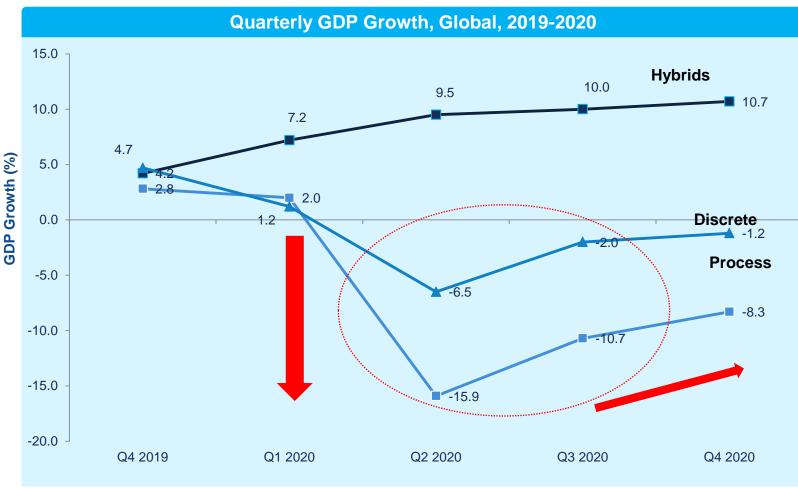
- Expiration of most lockdowns by May and partial economic rebound across most economies in May.
- Demand and production drop sharply during the second quarter and return to normalcy by Q4 2020

• Unlikely,

MODERATE RECOVERY (Probable CASE)

- Lockdowns release in May, but infections rise up to drive a lock and release cycle, every three months.
- Stock market impacted, due to growing U.S. and China geopolitical tensions
- Industries look to re-shore from China

DRAWN OUT RECOVERY(Most Likely CASE)


QI	Q2	Q3	Q4	QI	Q2	Q3	Q4
2020				20	21		

- COVID-19 cases to continue unabated till end of Q4. Another wave in fall will lead to economic lockdown.
- Investments are frozen, but new normal realization will progressively open up spending. This may start by Q2/Q3 2021.

COVID-19 Implications on Industrial and Energy Markets

COVID-19 Impact	Business Implications
Double-whammy leads to CAPEX and OPEX cutbacks	Operating companies (O&G) on an average have cut back 40% of CAPEX and 15% on OPEX. This would mean acute pressure on spending, unless the spend is related to safety, security or compliance.
Remote operations/un-tethered workspaces	Increased need to monitor, manage and optimize plant operations remotely. Virtualized infrastructure, remote technology investments, remote maintenance and support will emerge as some of the key needs.
Increased connectivity leads to a high degree of vulnerability	Hyper-connective infrastructure will lead to rise in spear-phishing, insider threats, ransom ware and malware. Visibility of threats is key, while managing deep packet inspection will help in security posture.
Increase in consumable consumption	Downstream chemicals and petrochemicals see short-term offtake. Isopropyl alcohol, polypropylene production will increase. These industries are the silver lining.
Cratering oil prices will take at least 12-14 months to recover	This the new normal. Operating companies will see tough quarters, refining output will decline or be re- purposed. Market will see an exponential adoption of digital technologies to keep costs in check.
Extension of turnaround cycles	Avg. industry turnaround cycle is 2 years. This is pushing customers to extend turnarounds beyond 3 years. This would drive customers to prefer longer MTBF with better 'first line of defense' solutions.
Service growth will be largely unaffected	Solution providers should double-down on offering service value-propositions around training, virtual commissioning, data analytics and system health checks. Service profitability will increase.

Our Models Predict a Year Long Recession, but the Dynamics of Situation Demands Frequent Forecasting

leads to a fullwill see Petrochemical vear recession s are the silver a crater lining, Power will remain moderate Steady growth Consistent across F&B, growth as per Not Hybrids affected Lifesciences. market CPG. average. V-shaped recovery but markets won't Delayed sharp Next 9 return to Discrete months recovery positive levels until late part of Q1 2021.

Magnitude of Disruption

Length

Five quarters of

-ve growth

Depth

Next 12-

months

15

Industry

Process

Source: Frost & Sullivan

Shape

model. Oil and

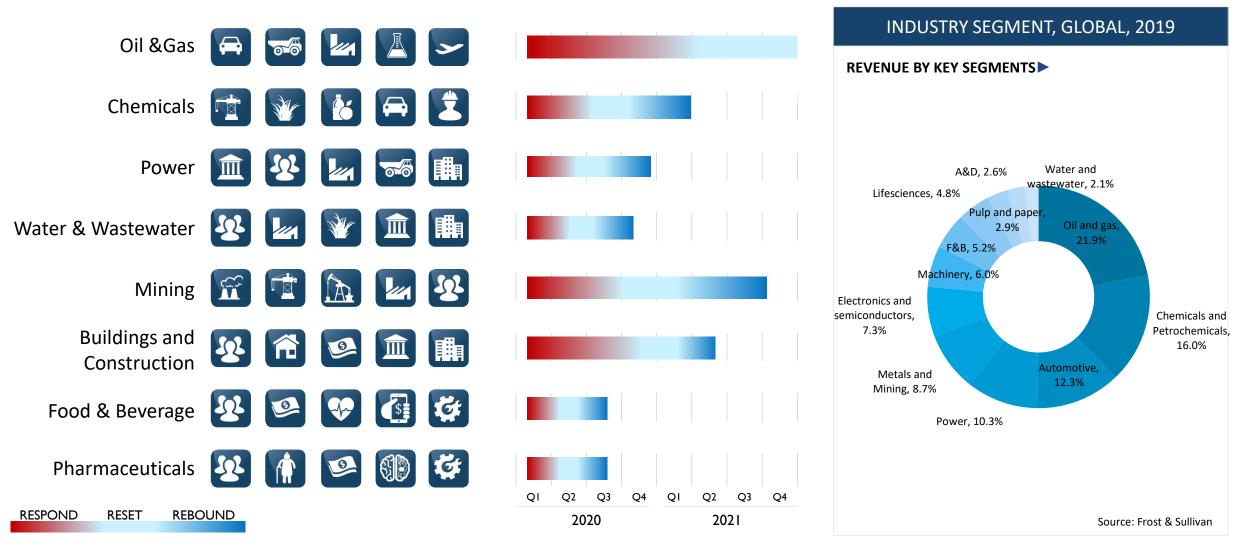
gas is worst

Chemicals

Bath tub

hit.

and


recovery

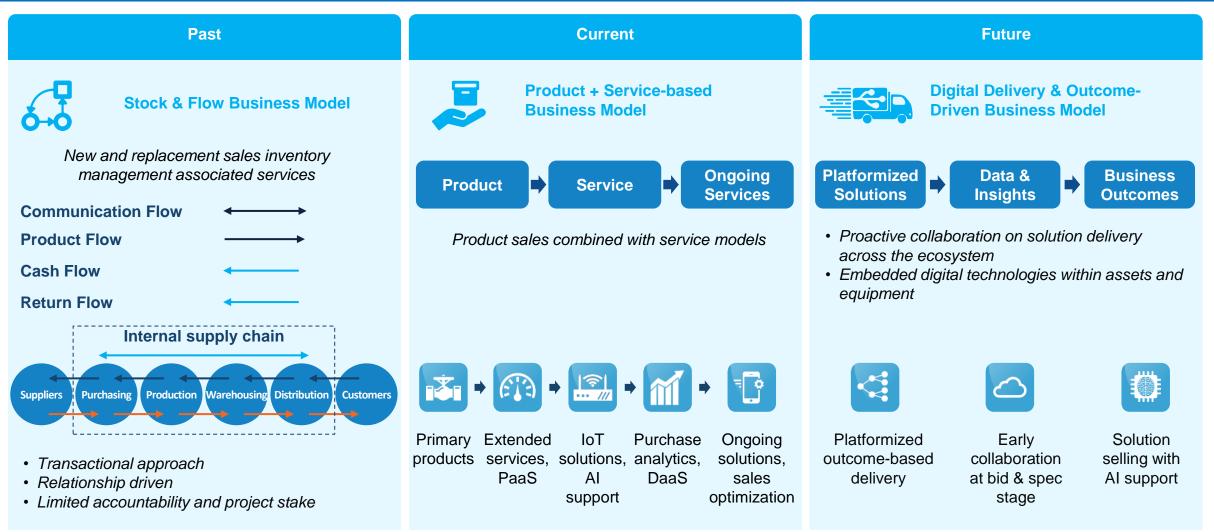
- Chemicals, petrochemicals, storage facilities face short-term focus and gains.
- Lifesciences, F&B, Medical devices buck the downward trend
- Pockets of growth opportunities exist, with digital technologies expected to see exponential adoption rates as the market recovers.

FROST & <u>SULLIVAN</u>

End-user Outlook

KEY FACTORS IMPACTING RECOVERY & EXPECTED TIMELINE

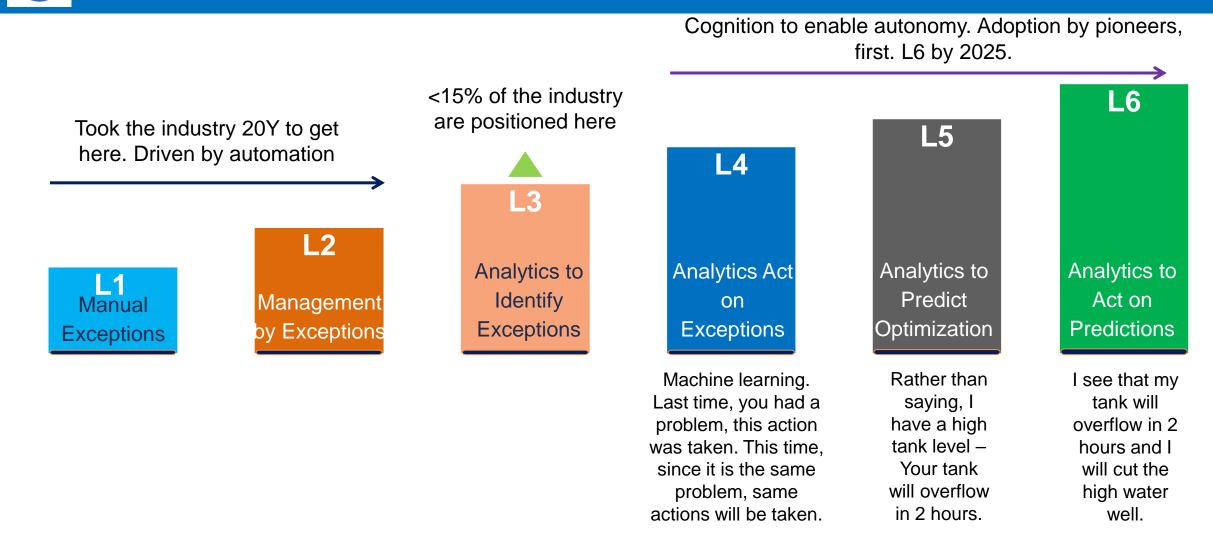
FROST 🔗 SULLIVAN


03. Industry and Technology Trends

Top trends impacting industrial and energy markets

TREND 1: EVERY BUSINESS WILL BECOME A CONNECTED BUSINESS PLATFORM INFRASTRUCTURE IS ESSENTIAL FOR THE FUTURE

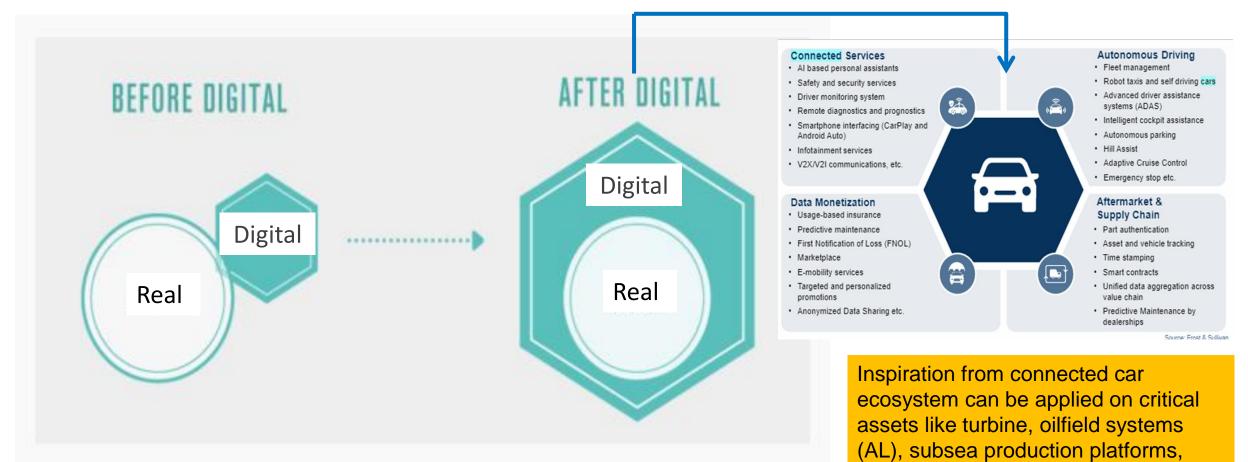
Ageing assets, plants and workforce are three forces that will drive an exponential adoption of connected business models.



Source: Frost & Sullivan

TREND 2: AUTOMATION -> AUTONOMY

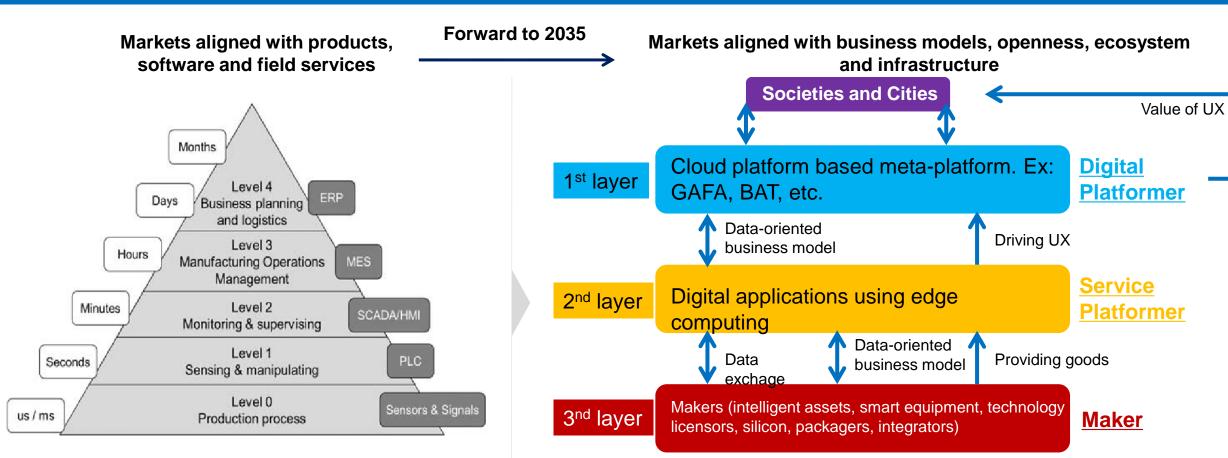
ENTERPRISE SCALING OF AI, ACROSS A CUSTOMERS VALUE-CHAIN


"Autonomous oilfield is the big project, this year – everything is instrumented, automated. Devices make self adjustment correction. We have guys that operate the wells, facilities and drilling rigs. This is looking at the integrated systems and uses a model approach to operate more efficiently. Use a concept called as 'virtual control room' – we are presenting the data, wherever they are at."

TREND 3: GOLDEN AGE OF HARDWARE SET TO MAKE A COMEBACK

SENSING \rightarrow SENSEMAKING. DUMB ASSETS \rightarrow SELF-HEALING ASSETS

Online merges with offline - Instead of focusing on the online world and thinking of digital as an added value, we think of the world as an integrated social systems, with all industries updated by digital.



Digital was added as an after-thought. Ex: Modernizing ageing assets Digital is embedded in hardware to drive services and potentially selfoptimization/autonomy network effect

aero derivative turbines, etc.

TREND 4: 3-LAYER ARCHITECTURE WILL REPLACE TRADITIONAL 5-LAYER A CREATIVE DESTRUCTION and EXPANSION OF INDUSTRY STRUCTURE

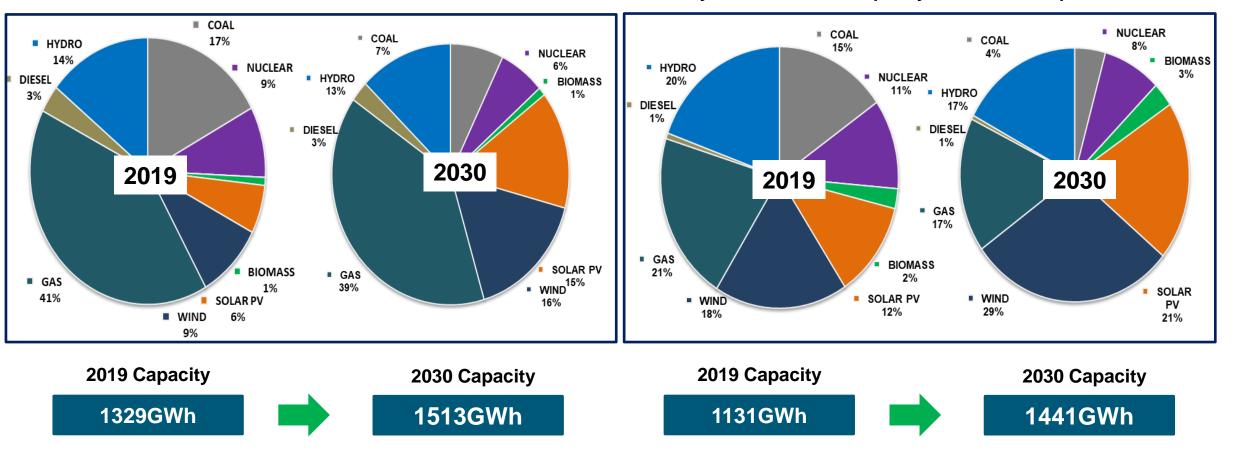
Solution providers will align themselves to one of the three layers, with innovation on business models driving revenue monetization.

Customers consumption of technology was also aligned with products and inhouse maintenance Customers will become a part of society, consuming services from digital platformers (Google, Amazon, Facebook, Apple; Baidu, Alibaba, Tencent). Profit pool value for service platformers and makers will depend on quality of service/outcomes provided.

TREND 5: DATA AND SERVICES COMBINE FORCES

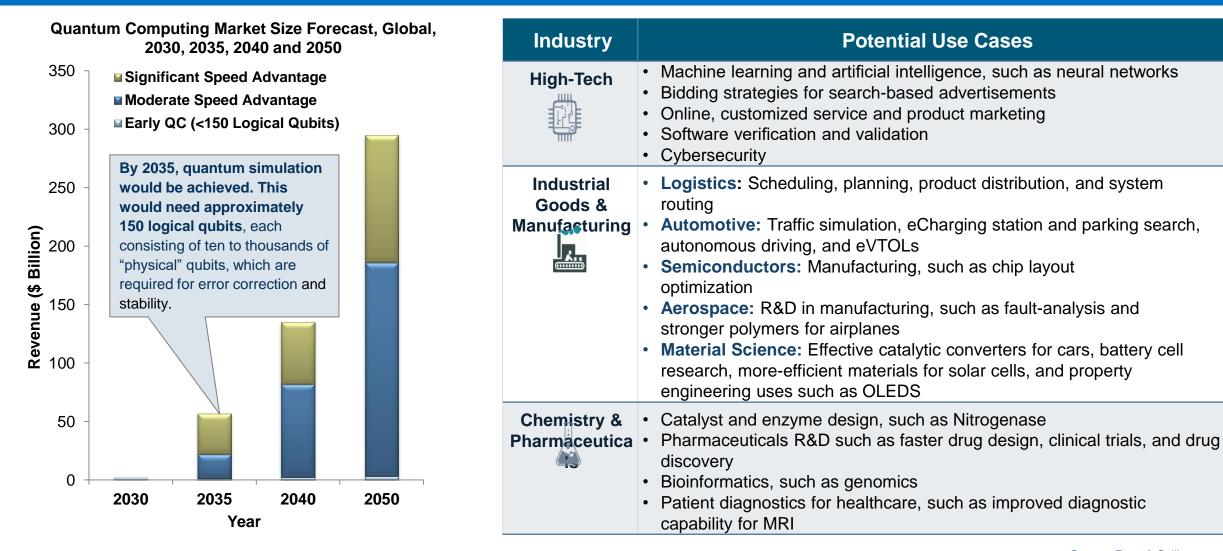
PREFERENCES AND SERVICES WILL BECOME INDIVIDUALIZED

	Data-As-A-Service	Circular Economy	Everything-As-A-Service	Shared Economy
What is it?	The act of productizing data and trading it through bartering, brokering and/or business intelligence models, which analyze it to offer critical insights.	This is an industrial economy that, contrary to the traditional linear economy, reclaims used materials and recycles them as secondary raw materials for new products.	This is a monetization model whereby a business that traditionally sold its wares to customers, now sells them as a service.	This is a personalized product or service, which is better tailored to suit customers' individual needs. Technology could be often leveraged to achieve this at a competitive price.
What are the three major driving Indicators ?	 Analytics to generate insights Customer Or Company related research Productivity Insights 	 Reuse and repurposing of products Climate change Service- based business models Resource optimization 	 Shift from Capex to Opex based model of purchasing Outcome focussed services Cost savings 	 Mobile connectivity Cloud and edge computing Increasingly automated society Availability of labour
What are the ley Application Areas ?	 Data Aggregation B2C Monetization B2B Monetization Data Platforms 	 Oil & Gas Mobility Steel Building Environment 	 Platform-As-A-Service Analytics-A-A-Service Energy-As-A-Service Mobility-As-A-Service 	MobilityFinancial servicesSpace & ServicesEducation
What are the implications for 2025 and beyond ?	 Automotive, IT, Healthcare, Telecommunications and the Energy Sector will tremendously advance with innovative services. 	 Integration of recyclable and reusable materials into product chain. Decreasing usage of plastics 	 Shift to –As-A-Service plans Energy, Mobility, Analytics, Healthcare, and Security will be the key growth markets. 	 Connectivity models will be co-operation and sharing based Governments will play a larger role in regulating services
What is the 5-10 year future vision ?	 Shift from traditional to non- traditional companies for data monetization needs Growth in data related products Increase in productivity 	 Close loop recycling, reuse, and refurbishment process Climate change concerns will receive greater media coverage which will influence decision making 	 Future XaaS models will be highly individualized, responsive data-driven and full controlled by customers Information based services will focus towards pricing and business innovation 	 Increase in the competition for shared services, asset ownership will be playing a key role. Development of more B2B and B2C shared business models

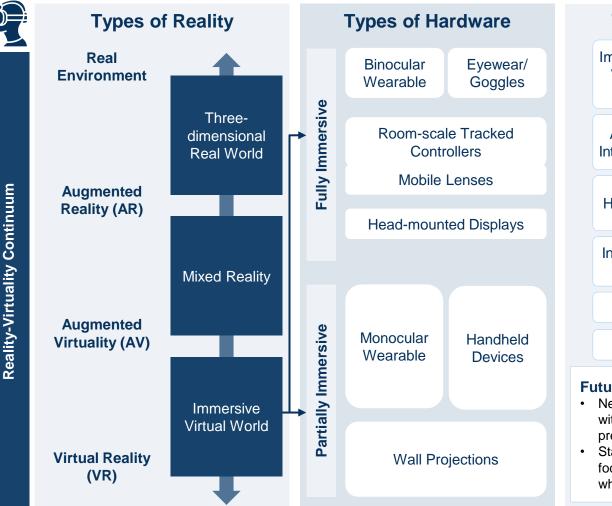

TREND 6: ENERGY MIX WILL CHANGE

GAS SLOWDOWN, RENEWABLE WILL TAKE-OFF

De-centralization, digitalization and de-carbonization will re-shape future energy markets. Remote windfarms will become multi-billion \$ opportunity in near future.


Utility Scale Installed Capacity Fuel Mix, North America, 2019-2030

Utility Scale Installed Capacity Fuel Mix, Europe, 2019-2030


TREND 7: Advanced COMPUTING: QUANTUM AND NEUROMORPHIC FIRST GRADE GENERAL PURPOSE QUANTUM COMPUTERS EXPECTED by 2030

Quantum computers will completely eliminate the time barrier and eventually minimize the cost barrier reducing time-tosolution from months to minutes.

TREND 8: AR and VR will merge to provide a Reality-virtuality continuum REMOTE SERVICES WILL DRIVE A CONVERGENCE OF TECHNOLOGIES

A new race for building the largest content for industrial ecosystem by attracting developers.

5–15 Year Future Vision for the Trend

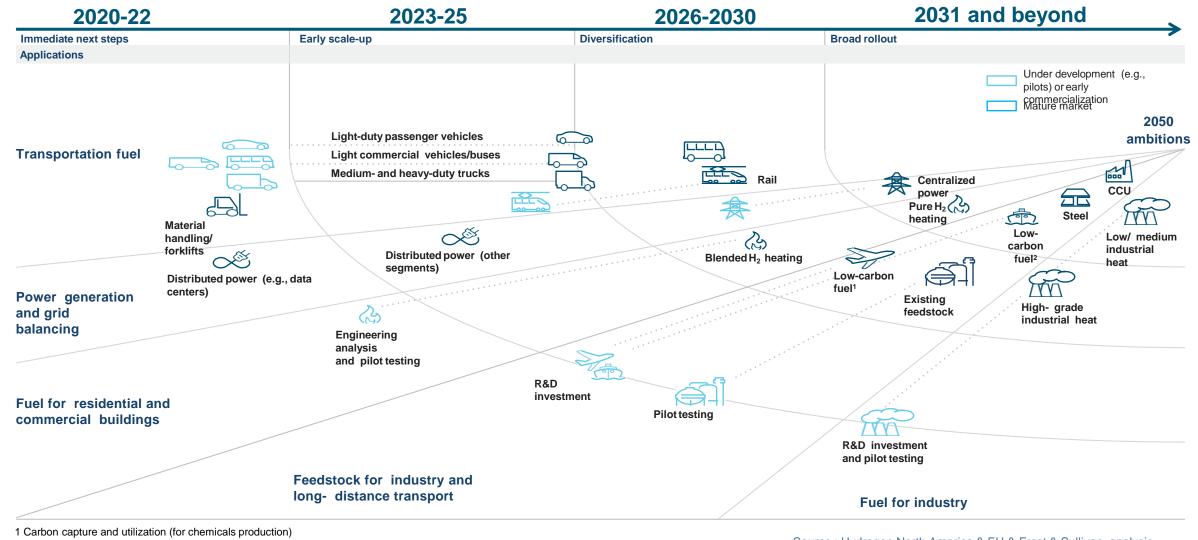
By 2022, nearly 23 million augmented reality or mixed reality glasses will be sold per year.

Physical World

Synthetic World

By 2025, China is expected to lead the VR market, with investments pouring into patents, standards, and products.

AR, VR, and robotics will merge to develop virtual reality robots, which will have a huge impact on manufacturing, retail, security, healthcare, and defense.

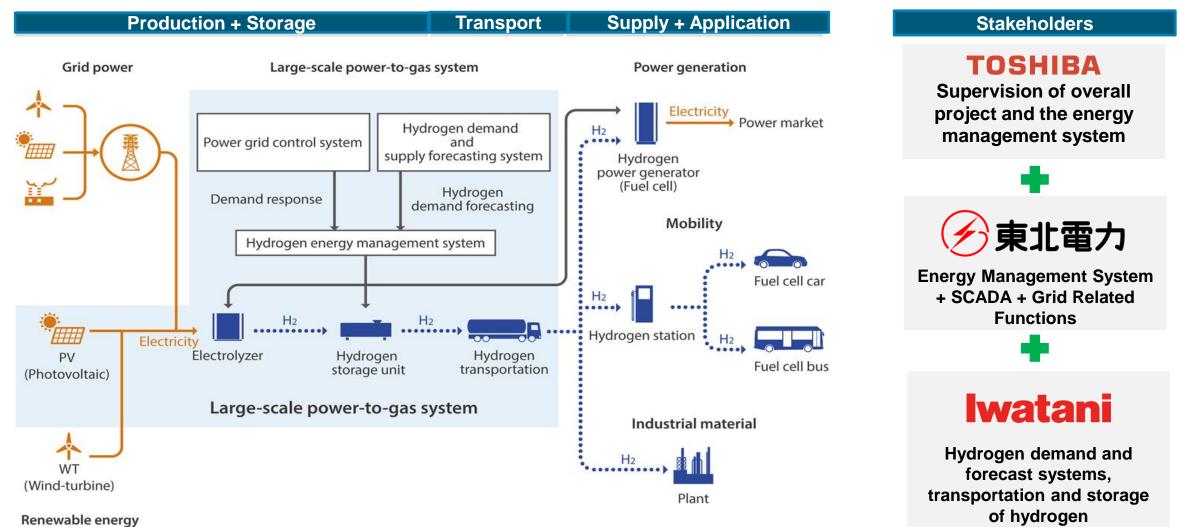

Beyond 2030, AR and VR will eventually merge, allowing users access to the total realityvirtuality continuum.

Source : Frost & Sullivan

TREND 9: HYDROGEN ECONOMY OF THE FUTURE

FAR reaching and promising applications could drive a broad rollout

Infrastructure build out and disruption across power industry will be key things to watch out for.


2 Biofuel, synfuel, ammonia

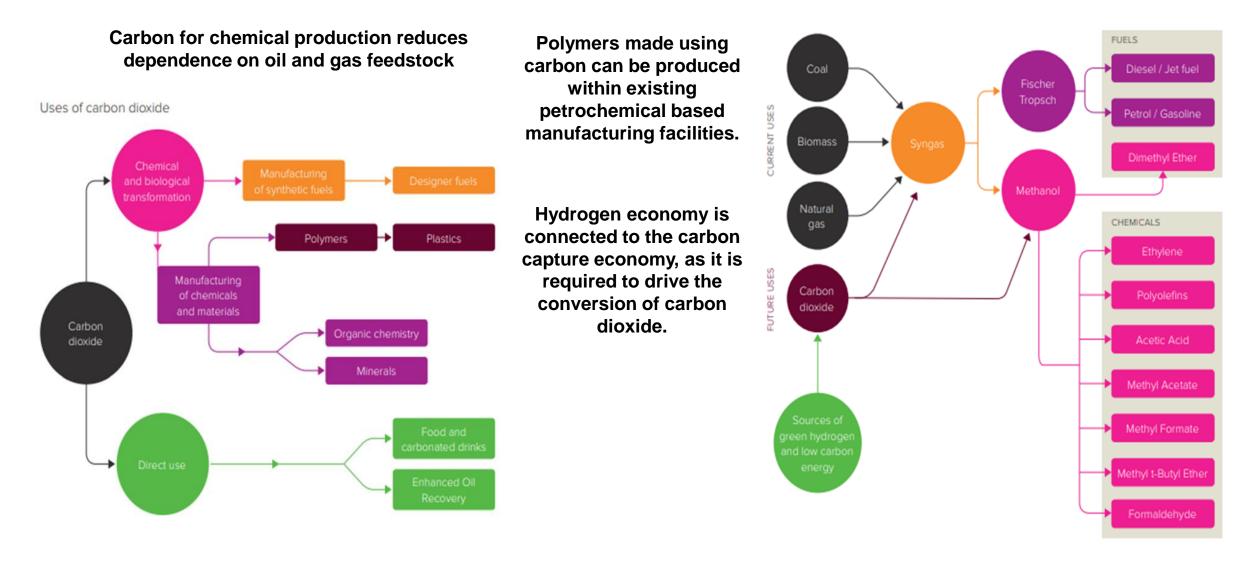
Source : Hydrogen North America & EU & Frost & Sullivan analysis

27

HYDROGEN USE CASE FROM TOSHIBA

Trading platform, total system monitoring and optimization, hydrogen metering solutions, infrastructure build out for plant use are some of the key growth areas.

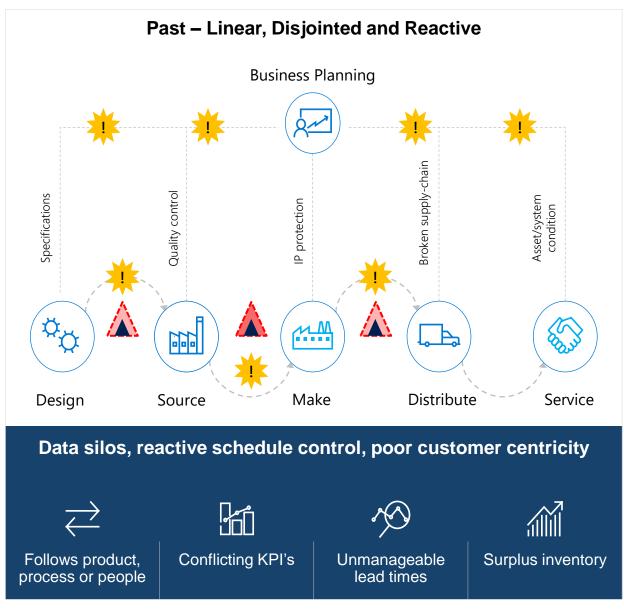
*F2HR – Fukushima Hydrogen Research Field Source : Toshiba & Frost & Sullivan analysis


FROST & SULLIVAN

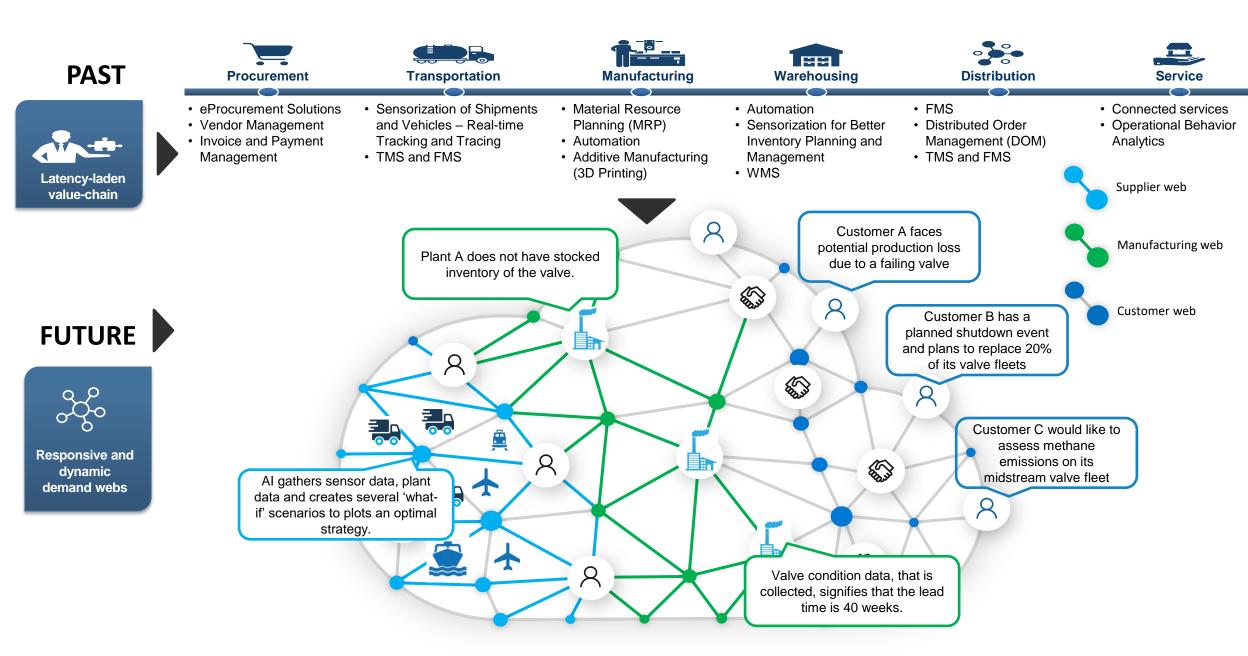
22

TREND 10: CARBON CAPTURE ECONOMY FOR DOWNSTREAM PRODUCTS

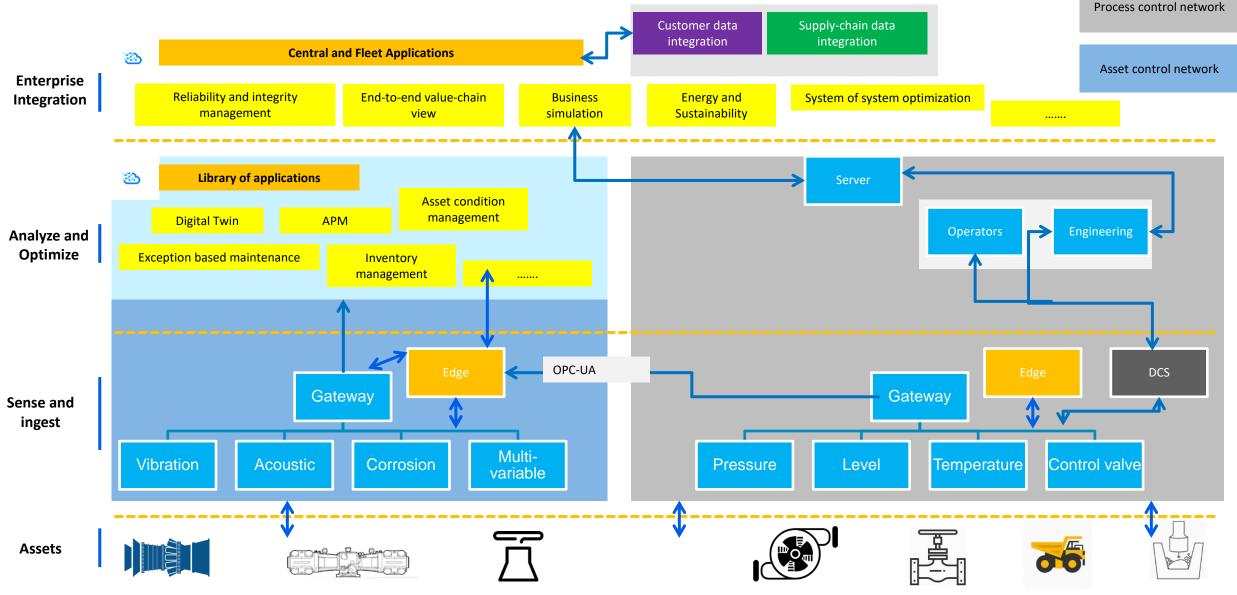
15% of GLOBAL CO2 emissions could be used per year by 2030


Apart from direct use of CO2, organizations are positioning themselves to become carbon neutral and even negative. Carbon reduction and removal technologies will be key to proving this a continued success.

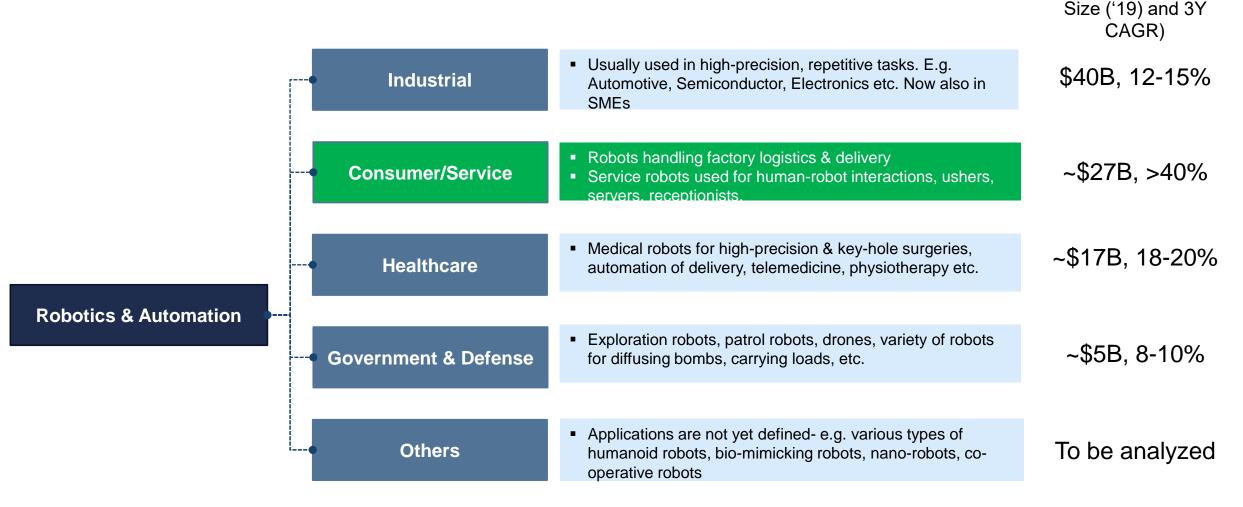
FROST 🕉 SULLIVAN


21

TREND 11: Fourth Industrial Revolution Changes the Way, We Design, Make, Source, Supply and Service



TREND 12: Supply-chain's become demand-web's of the future



TREND 13: Edge as the Compute Platform of Choice. DCS Maintains Relevance, but Not in the Same Way as We Have Known it

TREND 14: Robotics as a Growth Platform

Global robotics market is ~89B, with exponential offtake across end-markets. Industrial, healthcare and service robots will are top three sectors, with service robots growing the fastest.

Source: Frost & Sullivan. CAGR's may vary, considering the dynamic situation

FROST & SULLIVAN

04. Customer Trends

Critical issues and customer transformation

96 Critical Issues Across 14 End-markets

	Observed	Industry Specific C	ritical Issues Acros	s Process, Hybri	d and Discrete [Driven Indus	stries
Oil and Gas Upstream and Midstream	4IR (AI, Production Automation, Additive Manufacturing, Blockchain, Edge Computing)	Energy transition (De- carbonization, Methane emissions, Carbon capture, Hydrogen energy)	Seismic mapping (High performance computing, smart downhole sensors)	Natural gas monetization (LNG, CNG, GTL)	Data engineering, management and sharing	Skilled workforce Shortage	Cybersecurity implementation
Oil and Gas Refining	Centralized/above site management	Dynamic environmental regulations	Optimization performance of industrial base assets	Integrated DCS platform management	Cybersecurity implementation	Skilled workforce shortage	Data engineering and optimization
Chemicals and Speciality Chemicals	Feedstock cost management and dynamic sourcing	Product quality, monitoring and management	Asset performance management	Operational intelligence and analytics	Value-chain optimization	Transition to a circular economy	Cybersecurity implementation
Power Generation	Reducing Start-up times for conventional operators	Longer mean times between asset turnaround cycles	Cybersecurity implementation	Environmental Compliance	Skilled workforce shortage	Data engineering and optimization	Value-chain portfolio optimization
Water & Wastewater	Lack of importance and investment in digital solutions	Treatment efficiency	Skilled workforce shortage	Cybersecurity implementation	Water Scarcity	Value-chain portfolio optimization	Data engineering and optimization
Metals and Mining	Production cost management	Workforce safety and security	Environmental compliance	Mining equipment reliability	Digital autonomy in mining equipment	Transition to a low carbon economy	Enterprise Data Management
Life Sciences	Time-to-new drug development	Siloed legacy systems	Reduction of waste	Inaccurate demand visibility	Skills shortage	Lack of digital modernization	Cost & feasibility management
Food & Beverage	Digital modernization of existing plants	Resource (water, energy) efficiency optimization	Direct manufacturing-to- consumer channel shift	Compliance and traceability	Data engineering and management	Supply-chain resilience	Machine uptime management
Pulp and Paper	Navigating Grade Turbulence	Balancing costs and efficiency with digital solutions	Cybersecurity implementation	Environmental Compliance	Reduction of Waste	Circular economy transition	
Automotive	Flexibility and Velocity in throughput	Maintaining consistent product quality	Managing recall volumes	Data management across value-chain	Simulation (AR/VR for efficiency management)	Supply network visibility	Value-chain traceability
Aerospace and Defence	Highly cohesive, low friction data technology stacks architecture	Digital continuity, simulation and virtual reality integration	Supply network resilience management	Cybersecurity implementation	Advanced robotics Implementation	Cognition Implementation	Driving alternate revenue streams
Electronics	Shrinking Operating Margins	Complex Global Supply-Chain	Service and Warranty Management	Short Product Lifecycle Management	Demand Ready Manufacturing	Circular economy transition	Data engineering and optimization
Semiconductors	Visibility on end-to-end supply chain	Cost reductions vs product performance and quality	Accelerated implementation of new digital technologies	Reduction of waste, shift to circular economy	Skills shortage	Cybersecurity implementation	
Machinery	Aging workforce leading to skills shortage	Maintaining product quality and workforce safety	l Sluggish demand from mature markets	Cybersecurity implementation	Data engineering and optimization	Supply Chain Traceability	Circular economy transition
	Observ	ed Cross Cutting Critica	Il Issues across Process	, Hybrid and Discrete	Industries		
Digital Transformation C Business Value Col	nversion IO Sustaina	ntal Compliance, bility, Circular conomy	Engineering, Manageme nd Insights Derivation	^{nt} Skilled Workforce S	hortage Traceabi Optimiz	lity and	Cybersecurity implementation

Customer Use Case 1: ENI Becoming New Zero by 2030

Eni's circular transformation began Downstream with the refining sector. They were the first to convert a traditional refinery into a biorefinery through the use of our proprietary technologies. The transformation has also involved the waste-to-energy sector, thanks to proprietary waste-to-fuel technologies, and the chemical industry, in which they are studying and creating new processes and products – giving value to waste plastics by converting them into secondary raw materials.

	CORE BUSINESS		NEW GREEN BUSINESS			
UPSTREAM	LNG	DOWNSTREAM	RENEWABLES	CIRCULAR ECONOMY	FORESTRY	
	Increased Efficiency			New Products (from organic and inorganic waste)		
	Growing Share of Gas	S	Growth in Zero Carbon Sources			
CCUS(Carbo	n, Capture, Utilization	and Storage)	Natural Climate Solutions			
	NEW TECHNOLOGIES					

FROST 🔗 SULLIVAN

Source : ENI & Frost & Sullivan analysis

Customer Use Case 2: Equinor's Digitalization Initiatives

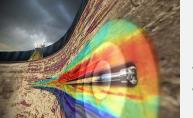
Million USD Improvement impact 2019

50% increase

Billion USD Cash flow improvement 2020-2025

"TRUE POWER OF EFFECTIVE DIGITALIZATION"

Operation centres


- Offshore assets
- Unconventional assets
- Geo-operations
- Drilling & well

Data driven operations

- Digital field worker
- Digital twin Echo
- Operational planning
- Drones and 3D printing

Subsurface analytics

- Subsurface data lake
- Reservoir experience platform
- Well analytics

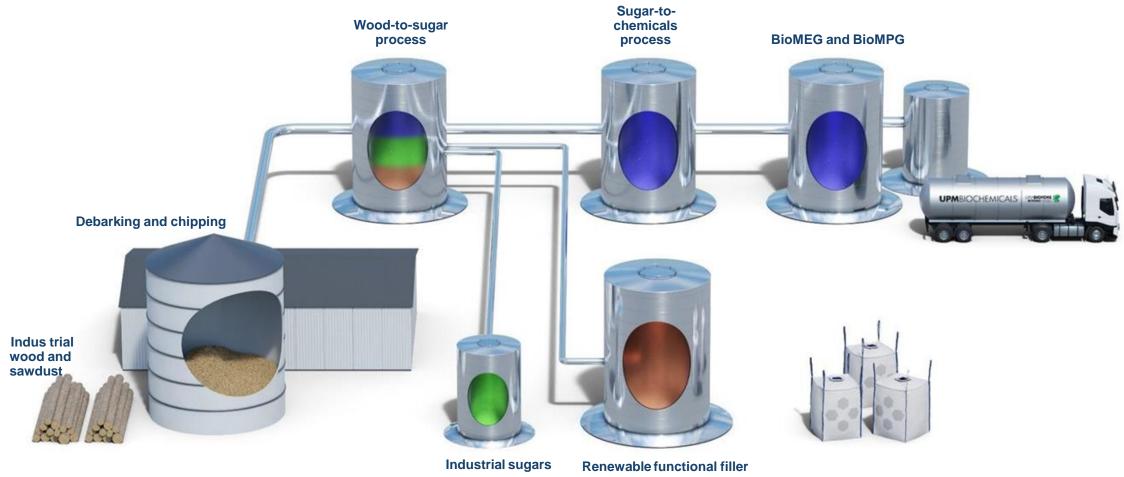
Digital drilling & well

- Automated drilling control
- Well planning

>20

Assets connected to integrated operation centres

>20

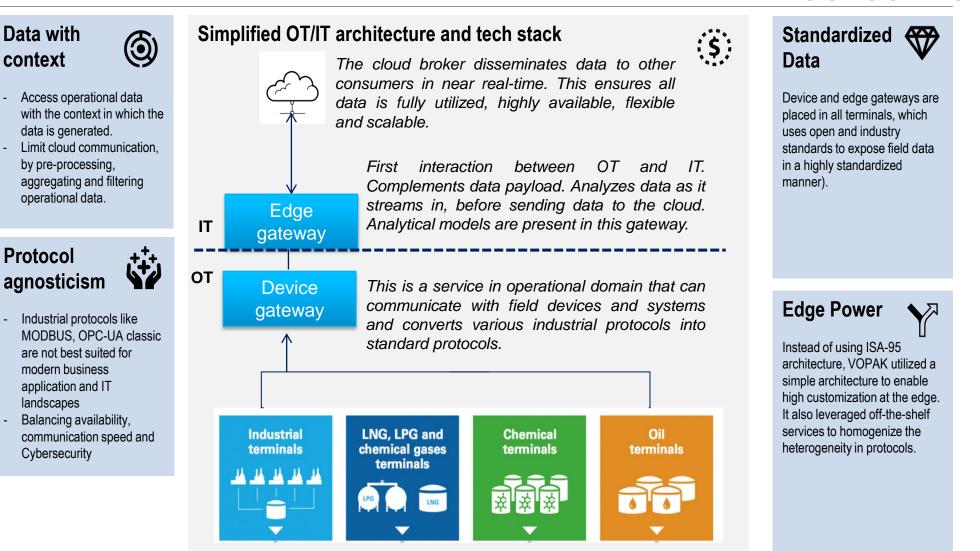

Assets supported by new digital solutions

>50 Assets with digitalized

Assets with digitalized subsurface data

13 Mobile rigs with automated drilling control

Customer Use Case 3: UPM's Biochemicals from Wood Processing


process

"Our wood-based renewable biochemicals offer sustainable and competitive **high-quality solutions for replacing fossil-based raw materials.** Our responsibly sourced renewable lignin is already in use across various industries and applications. Moreover, we will invest in a new-to-the-world industrial scale bio refinery at Leuna, Germany. The bio refinery will convert solid wood into next generation biochemicals: bio-monoethylene glycol (BioMEG) and lignin-based renewable functional fillers. In addition, the biorefinery will produce bio-monopropylene glycol (BioMPG) and industrial sugars. The facility is scheduled to start up by the end of 2022. " – CEO, UPM

Customer Use Case 4: VOPAK's OT/IT Integration

OUTCOMES

Vopak's focus on technology leadership is to enable the organization store vital products with care.

Some of the key digital initiatives include:

- Predictive maintenance for motor operated valves
- Energy management initiatives
- Cost-effective sensoring
- Digitizing whole terminals in multiple dimensions.
- Simplification of the tech stack

CHALLENGES AND TECH IMPLEMENTATION

Customer Use Case 5: A Middle Eastern O&G Organization's Digitalization **Initiatives**

Digital Centers

Has established state-of-the-art Technologies through multiple Digital Centers in its Premises. These Command & Decision Support Centers enabled to strengthen their Digital "ThinkTank", to add more value to aspects of : Operations, Development, Production & Engineering.

Digitization of Subsurface Activities

- Reservoir Rock classification Data Driven Reservoir Model for Production Optimization
- AI Guided Seismic Interpretation
- Well enhancement **Opportunities Identification**

- Access to all data to set clear Benchmark and • **KPIs**
- Analyze and investigate performance •
- Set action plans for improvement ٠
- Better visibility for all the wells in Abu Dhabi

- Main Parameters
- Plants and Pipelines
- PMC Dashboard ٠

- Finance
- Inventory
- Historical Maintenance

Robotics & Drones: For Inspection & Monitoring

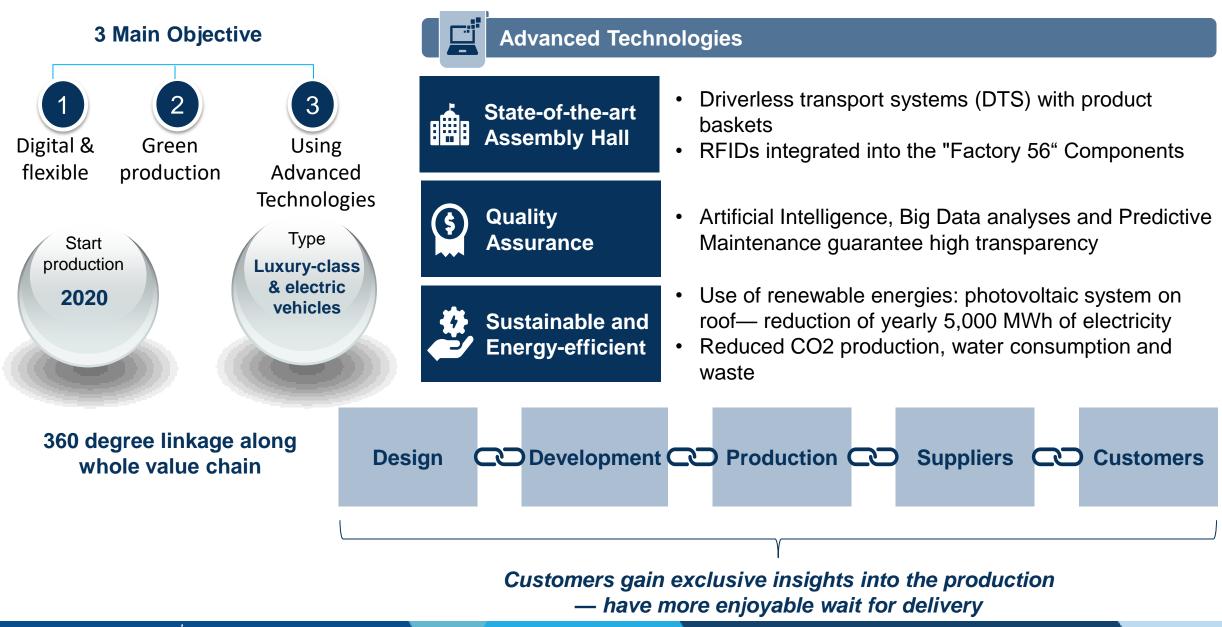
- Advanced Inspection with Drones for Flare & H2S
- Robotics use for Walk around & operation safety
- Unmanned Field of the Future

PANORAMA: THE GATEWAY TO DIGITAL TRANSFORMATION

Panorama represents a single source of accurate information across value chain

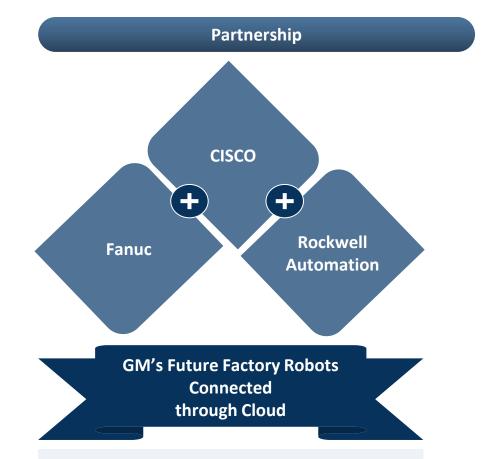
Customer Use Case 6: A European Chemicals Organization Digital Transformation Initiative

Digital Programs									
Programs	Digital Customer	Digital Site	Digital Plant	Digital Worker	Digital Supply Chain				
Objectives	End-to-end digital customer interface	Omnipresence of site services accessible by customers and employees	Efficient manufacturing through automation and data integration	Digital equipment for employees	Seamless digital connection for flow of material & information				
Enabler	New ways of working: organization, qualification, and communication								
		IT-Architecture:	vertical integration, IIoT platfo	rms and security					


Allocation of € 100 million for

- Development & testing of digital technologies
- Development of digital skills
- New business models

To benefit from the latest technologies such as:


- Cognitive Manufacturing
- Blockchain
- Analytics
- Quantum Computing

Customer Use Case 7: Factory 56 — Modern Car Production

Customer Use Case 8: GM IIoT Initiatives- Pilot Project to Reduce Factory Downtime

GM factories will leverage a combination of IIoT with data from sensors and data analytics all enabled by cloud technology to reduce unplanned downtime.

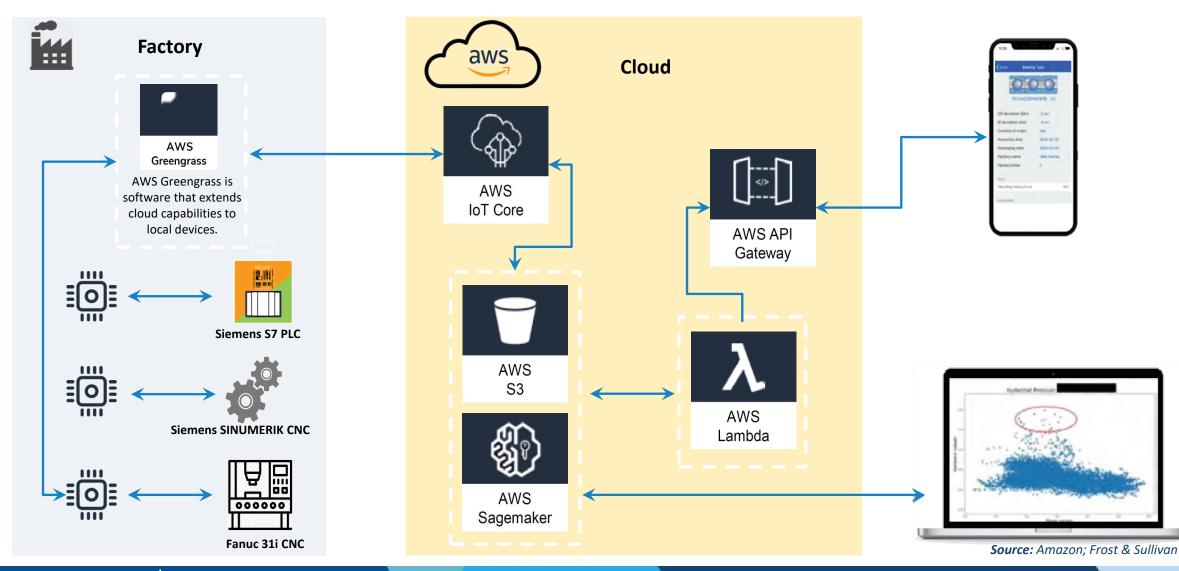
GM leverages **Cisco Intercloud Fabric**, robotics manufacturer **Fanuc ZDT** and hardware maker **Rockwell Automation** to collect data from 800 robots and external devices and send it to a cloud network setup by Cisco for further analysis primarily to reduce downtime.

Challenges

Unplanned downtime costs: **\$15,000–\$40,000** per minute Factory workers often learn about issues with their production machinery too late – after the line shuts down.

Fanuc uses algorithms that have been tailored to factory robots to create insights for GM.

Fanuc's Zero Down Time (ZDT) application collects data generated from robots to determine optimization approach of GM's manufacturing systems by reducing energy consumption, extending equipment life, and improving cycle time and product quality. GM will leverage cloud based IoT analytics to factories across the globe in the next 5 years.

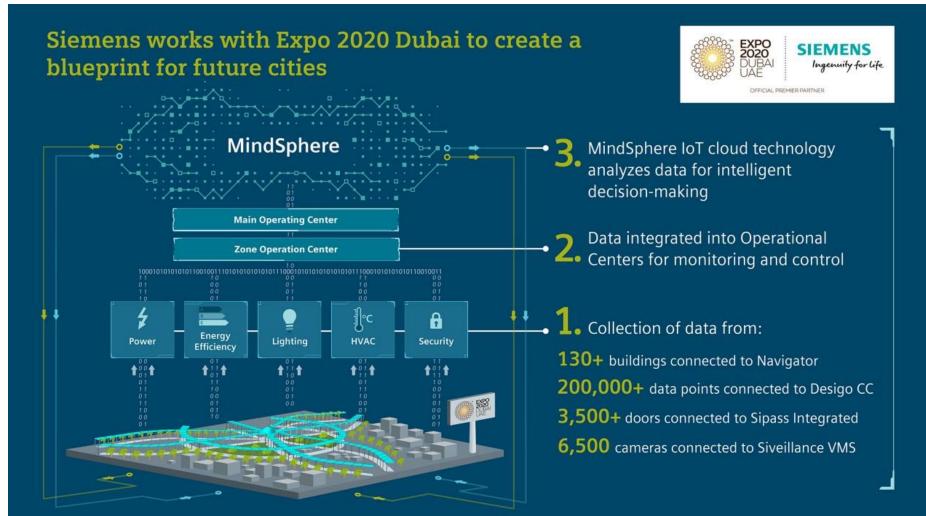

Business Impact

- GM has deployed ZDT in 27 factories in 5 countries analyzing over
 5,000 robots
- ZDT has successfully detected over 45 cases of potential failure across 26 production plants over the past year and saved already customers *\$40 million*

Customer Use Case 9: SKF Optimizes Production Processes Using AWS Cloud

Using AWS, SKF is optimizing its production processes, reducing costs, and providing a better experience to its customers

SKF is a bearing manufacturer founded in Sweden in 1907. SKF uses AWS machine learning, data lakes, databases, and more to help it speed innovation.


Customer Use Case 10: Evonik's MTP Use for Efficient Automation Integration

ENGIE	Siemens	Yokogawa	Evonik
Module Supplier Package Unit	Module Automation Engineering	Plant Automation Engineering	Plant Integrator End User
Cooling Machines	PLC S7-1500	DCS Centum VP	Evonik Site
	S7-1500	Production Plant PU ENGIE S7-1500 Others	

The chemical industry today faces the challenges of producing more flexibly and with a faster time-to-market. It is therefore necessary to increase the requirements for automation systems such as interoperability and standardization. Modular automation offers a suitable solution for these challenges. The integration via the MTP reduces the manual effort and thus saves time and costs.

Customer Use Case 11: Expo 2021 Dubai, by Siemens

The core of the digital infrastructure is MindSphere, the open, cloud-based IoT operating system from Siemens. Data from sensors, gateways, systems and building management applications is gathered in MindSphere, where it can be analyzed and visualized by applications such as Navigator, the cloud-based energy and asset management platform from Siemens.

RAM RAMASAMY

Industry Director Email: ram.ramsamy@frost.com

The Growth Pipeline™ Company Powering clients for a future shaped by growth