# Engineering with a difference

# Feasibility study of additive manufacturing (AM) center of excellence in Finland

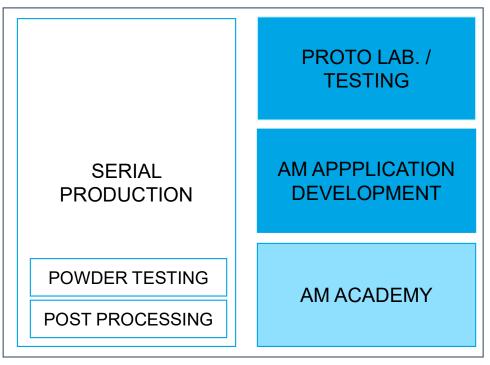
Etteplan AMO Team 20.11.2019



## **AM** in Finland

- Currently, there are none AM service bureau with needed equipment and competence to provide manufacturing services for critical applications in Finland.
- Finland is missing innovation center similar to AMEXI in Sweden
- There is an opportunity for a new 3D printing service bureau or consortion with credibility in Finland

# **HX** program Industrial value


- Finland will replace its Hornet fighters in 2021, and the bidding process for the program is now ongoing.
- The primary objective of industrial participation is to ensure the military security of supply of defense industry products from Finnish and foreign manufacturers and the availability of critical technology in any circumstances. The secondary objective is to ensure the development of Finnish technology and competence in the future as well.
- The total value of the Industrial participation (IP), is approximately EUR
  2-3 billion.



#### **Overview**

- HX-program opens an opportunity to create industrial-scale additive manufacturing expertise in Finland, which serves and develops Finnish defense and security industry expertise, and also brings technical expertise to the use for other industries
- The AM Center of Excellence can accelerate the industrial adoption of additive manufacturing and help bring a new generation of innovative engineers and products to the market. The excellence center will fill the gaps in additive manufacturing knowledge and this is what Finnish manufacturing needs to take full advantage of the new technology.
- Companies in HX AM Consortium need to commit to do what it takes to reach the highest level in AM, production of critical aerospace components in collaboration with others and with whole Finnish AM ecosystem.

#### Additive Manufacturing Center of Excellence (AMCE)





# Necessary steps in creation of a qualified component created by LPBF

full understanding 4. Post 1. Design 2. Build prep processing Visual · Build volume limitations Radiography or CT Self-supporting design File formats Metallurgical Design for · Powder & support removal Model Raw part · Support integration Dimensional **LPBF**  Surface finishing inspection processing Platform layout Analyzing build data requirements Part orientation Part & lot acceptance · Lot acceptance articles · Material properties & Stress relief Structural Thermal requirements • HIP assessment processing · FEM, CFD, etc. Manufacturing Solution treat or anneal Precipitation age Consequence of failure Machining Build complexity · Quality system Part Finishing · Bead/grit blast Service classification · Structural safety Qualification operation Peening bureaus margins Honing/polishing Quality control specs Etching · Certification & analysis Cleaning Environmental control · Integrity of solid Model quality · Model checking Chemistry Materials Version control Mixing 5. Certification Reuse limitations Planning for all Dimensional · Platform selection Component operations from concept Surface texture · Recoater selection development to part **Build lot**  Final part PT, ET, UT, CT Build parameters Final Written prior to plan execution · Lot acceptance test & result · Build data collection inspection & proceeding to build · Process certification records Chamber environment acceptance Proof testing Restart policies Packaging · Post-build powder removal



# Levels of AM Quality - LAMQ

Extremely critical component (aerospace,nuclear)

Critical component – needs classification / certification (PED/oil & gas etc.)

Critical component with dynamic loads – Fatigue!

Data sheet values should be met

Part needs to be made out of metal material

Finnish AM service bureaus



Typical industry needs

Military needs

# Research and Machine Base in Finnish Research Centers

- Large number of good research on-going
- Metal AM machinery in academia is distributed well geographically and still increasing
- Level of AM education varies in academia
- More education needed to universities and technical colleges for national spreading of AM
  - Design rules
  - AM techniques
  - Hands-on experience
  - Exercises & operating the machines

| Research<br>Center                                                  | Location     | Machine                                       |  |
|---------------------------------------------------------------------|--------------|-----------------------------------------------|--|
| Aalto University                                                    | Otaniemi     | EOS M290                                      |  |
| EOS Finland Oy                                                      | Turku        | Too many to list                              |  |
| LUT                                                                 | Lappeenranta | EOS M270, EOS M290                            |  |
| University of Oulu<br>in cooperation with Nivalan<br>Teollisuuskylä | Nivala       | SLM 280HL                                     |  |
| JAMK University of Applied Sciences                                 | Jyväskylä    | LPBF (planned for 2020)                       |  |
| Savonia University of<br>Applied Sciences                           | Kuopio       | Metal X (2019), LPBF & DED (planned for 2020) |  |
| SASKY                                                               | Sastamala    | SLM 125HL                                     |  |
| Turku University of Applied Sciences                                | Turku        | LPBF (planned for 2020)                       |  |
| TUT                                                                 | Tampere      | DED (wire-feed)                               |  |
| University of Vaasa                                                 | Vaasa        | LPBF (planned for 2020)                       |  |
| VTT                                                                 | Otaniemi     | SLM 125HL                                     |  |



## **Commercial Metal AM in Finland**

- Top level quality print service not available
- Laser Powder Bed Fusion (LPBF) only
- Limited production capacity
  - 5 medium sized metal AM machines in whole of Finland
- Advanced post processing not existing in Finland
  - Hot Isostatic Pressure (HIP)
  - Automatic support removal (Hirtisation)
  - Improved surface finishing (Hirtisation, MMP, abrasive honing..)
- So far three Finnish companies publicly announced metal AM machine acquiring

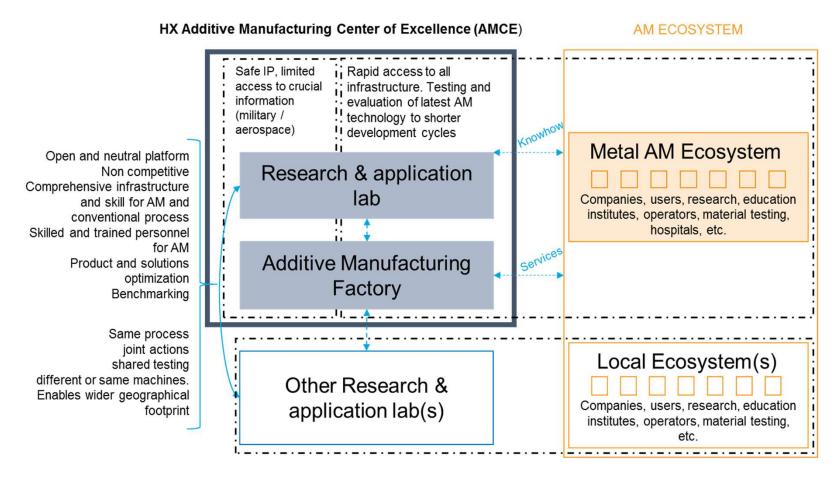
| Service Bureau | Location    | Machine                     |  |
|----------------|-------------|-----------------------------|--|
| 3D Formtech    | Jyväskylä   | EOS M290                    |  |
| 3D Step        | Tampere     | SL 280HL Twin (400 W)       |  |
| Delva          | Hämeenlinna | EOS M270, EOS M290          |  |
| HT Laser       | Keuruu      | SLM 280 2.0 Twin (700 W)    |  |
| Materflow      | Lahti       | Concept Laser M1, SLM 280HL |  |

| Company          | Location             | Machine       |  |
|------------------|----------------------|---------------|--|
| Lillback Powerco | Härmä                | 3D Systems    |  |
| Valmet Oyj       | Sundsvall,<br>Sweden | EOS?          |  |
| V.A.V. Group     | li                   | SLM Solutions |  |



# Service bureaus annual theoretical volume








| Example components with detailed information on their size, volume and print time. |                     |                    |                      |  |
|------------------------------------------------------------------------------------|---------------------|--------------------|----------------------|--|
|                                                                                    |                     |                    |                      |  |
| Component                                                                          | Bracket             | Piston             | Block                |  |
| Size                                                                               | 140 x 120 x 85 mm   | Ø50 x 56 mm        | Ø185 x 170 mm        |  |
| Volume                                                                             | 115 cm <sup>3</sup> | 57 cm <sup>3</sup> | 2180 cm <sup>3</sup> |  |
| Components per one build                                                           | 6                   | 13                 | 1                    |  |
| Estimated print time per piece                                                     | 13 h                | 4,5 h              | 180 h                |  |
| Potential annual volume                                                            | 420 pcs             | 1220 pcs           | 30 pcs               |  |
| combined theoretical production volume that Finnish metal AM service bureaus       | 3336 pcs.           | 7500pcs.           | 258 pcs.             |  |



### **Consortium role**





## **Overview of roles**



Overview of roles in HX AMCE consortium.(Patria Aviation Oy, 2019)



### **Benefits for Finland**

- Increases competitiveness of Finnish companies
  - Increased AM know-how leads to new innovations
  - Better and more cost-competitive products
  - Increased creation of added value
- Creates foundation for completely new industry in Finland
  - Opportunity for Finland to be an early adopter of AM
  - High-technology manufacturing increased creation of added value
  - Huge export opportunity due to the nature of AM
  - Lost traditional factory jobs can be replaced by new AM factory jobs
- New high-paying jobs created
- Provides excellent facilities for high level research work
- Crucial contribution to security of supply



